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Prof. Dr. Alfred Toth

Semiotic calculi of extensional sign-connections

1. In this paper, I shall continue some ideas adopted for semiotics in Toth (2008b, c). I
intend to show that Clarke’s “Calculus of Individuals” (CI), which is based on the
Whiteheadean primitive binary predicate “x is extensionally connected with y”, is valid for
semiotics, too. Insofar, this paper is also a sequel of my mathematical-logic semiotics
presented in Toth (2007, pp. 143 ss.). As for the parts of this study, I will also follow Clarke
(1981), who subdivided his landmark-study into a mereological, a quasi-Boolean (without
null element), and a quasi-topological (without boundary elements) part.

2. Mereological calculus

We define the following first-order operators:

Cx,y = x is connected to y
DCx,y = x is disconnected from y
Px,y = x is a part of y
PPx,y = x is a proper part of y
Ox,y = x overlaps y (i.e., x and y share a common interior point)
DRx,y = s is discrete from y
ECx,y = x is externally connected to y
TPx,y = x is a tangential part of y
NTPx,y = x is a non-tangential part of y

as follows and illustrate them with semiotic examples:

D0.1 DCx,y := ¬C,xy

E.g., DC(1.2, 1.3) = ¬C(1.2, 1.3)

D0.2 Px,y := ∀z (Cz,x → Cz,y)

E.g., P(x, y) = (1.3) → (2.2 1.3)

D0.3 PPx,y := Px,y ∧ ¬Py,x

E.g., (1.3) → (2.2 1.3) ∧ ¬((2.2 1.3) → (1.3))

D0.4 Ox,y := ∃z (Pz,x ∧ Pzy)

E.g., (3.1 2.2) ∧ (2.2 1.3) = (1.3)

D0.5 DRx,y := ¬Ox,y

E.g., (3.1 1.1) ∧ (2.2 1.3) = ∅
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D0.6 ECx,y := Cx,y ∧ ¬Ox,y
E.g., x = (3.1 2.1 1.1) and y = (3.2 2.2 1.2) are connected, since (3.1) < (3.2), (2.1) <
(2.2), (1.1) < (1.2), (2.1 1.1) < (2.2 1.2), and (3.1 2.1 1.1) < (3.2 2.2 1.2), but x does

not overlap y, since (3.1 2.1 1.1) ∧ (3.2 2.2 1.2) = ∅.

D0.7 TPx,y := Px,y ∧ ∃z (ECz,x ∧ ECz,y)
E.g., x = (3.2 2.2 1.2), y = (3.3 2.3 1.3). If we assume that z = (3.1 2.1 1.1), then
P(x,y) holds, because (3.2 2.2 1.2) < (3.3 2.3 1.3), and since (3.1 2.1 1.1) < (3.2 2.2
1.2) and also (3.1 2.1 1.1) < (3.3 2.3 1.3), it follows that (3.2 2.2 1.2) is a tangential
part of (3.3 2.3 1.3).

D0.8 NTPx,y := Pxy ∧ ¬∃z (ECz,x ∧ ECz,y)
E.g., x = (3.1 2.1 1.1), y = (3.2 2.2 1.2), and z = (3.3 2.3 1.3). Although (3.1 2.1 1.1) <
(3.2 2.2 1.2), (3.3 2.3 1.3) is neither externally connected to x nor to y, so that x is a
non-tangential part of y.

Clarke’s axiomatization requires only the following to axioms, a mereological axiom and an
axiom analogous to the axiom of extension in set theory (Clarke 1981, p. 206):

A0.1 ∀x[Cx,x ∧ ∀y (Cx,y → Cy,x)]

E.g., for each x, y ∈ {1, 2, 3} (the set of the prime-signs, cf. Bense 1980), there is the set
{(1.1), (2.2), (3.3)}, and for each sub-signs of the structure (a.b), there is also the
corresponding sub-signs of the structure (b.a) in the semiotic matrix, i.e. for (1.2), there is
(2.1), for (1.3), there is (3.1), and for (2.3), there is (3.2) in the semiotic matrix. In other
words, AO.1 alone is sufficient to construct all the sub-signs of the semiotic matrix.

A0.2 ∀x ∀y [∀z (Cz,x ≡ Cz,y) → x = y]

E.g., let us assume that there are two semiotic sets S = {(1.1), (1.2), (1.3), (2.1), (2.2), (2.3),
(3.1), (3.2), (3.3)} and S’ = {(1.1’), (1.2’), (1.3’), (2.1’), (2.2’), (2.3’), (3.1’), (3.2’), (3.3’)}. Then,

AO.2 says S ≡ S’, iff they have precisely the same members. In other words, any set is deter-
mined uniquely by its members.

The following 47 theorems that are based on the two axioms and the eight definitions given
above, are displayed here in the order of Clarke (1981, pp. 206 s.):

T0.1 ∀x Cx,x

E.g., take any x ∈ = {(1.1), (1.2), (1.3), (2.1), (2.2), (2.3), (3.1), (3.2), (3.3)}.

T0.2 ∀x∀y (Cx,y ≡ Cy,x)

E.g., if (2.1) is connected to (3.1), then (3.1) is also connected to (2.1).



3

T0.3 ∀x∀y [∀z (Cz,x = Cz,y) ≡ x = y]

E.g., if x = (2.1), y = (2.1’), and z = (3.1), then to say that (3.1, 2.1) = (3.1, 2.1’) is identical to
say that (2.1) = (2.1’).

T0.4 ∀x∀y (¬DCx,y ≡ Cx,y)

E.g., if two sub-signs are not disconnected, then they must be connected.

T0.5 ∀x Px,x

E.g., (1.3) ≤ (1.3).

T0.6 ∀x∀y∀z [(Px,y ∧ Py,z) → Px,z]

E.g., if (3.1) is a part of (3.1 2.2), and (3.1 2.2) is a part of (3.1 2.2 1.3), then (3.1) is also a
part of (3.1 2.2 1.3).

T0.7 ∀x∀y [(Px,y ∧ Py,x) ≡ x = y]

E.g., if (3.1) is a part of (3.1 2.2), and (3.1 2.2) is a part of (3.1), then (3.1) = (3.1 2.2), which
is wrong.

T0.8 ∀x∀y [Px,y ≡ ∀z (Pz,x → Pz,y)]

E.g., if (3.1) is a part of (3.1 2.2), then ((a.b), 3.1)) → ((a.b), (3.1 2.2)) for (a.b) ∈ = {(1.1),
(1.2), (1.3), (2.1), (2.2), (2.3), (3.1), (3.2), (3.3)}.

T0.9 ∀x∀y∀z [(Px,y ∧ Cz,x) → Cz,y]

E.g., if x = (1.2) and y = (1.3), then P((1.2), (1.3)). If z = (1.1), then C((1.1), (1.2), and it
follows that C((1.1), (1.3)).

T0.10 ∀x∀y [Cx,y ≡ ∃z (Pz,y ∧ Cx,z)]

E.g., if x = (1.2), y = (1.3), and z = (1.1), then C((1.2), (1.3)) ≡ (P((1.1), (1.3)) ∧ C((1.2), (1.1)).

T0.11 ∀x∀y (Px,y → Cx,y)

E.g., P((1.2), (1.2 2.2)) → C((1.2), (1.2 2.2))

T0.12 ∀x∀y∀z [(Px,y ∧ DCz,y) → DCz,x]

E.g., if P((2.1), (2.1 3.1)) ∧ DC((1.1), (2.1 3.1)) → DC((1.1), (2.1)).
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T0.13 ∀x ¬ PPx,x

E.g., PP((1.3), (1.3)).

T0.14 ∀x∀y (PPx,y → Px,y)

E.g., PP((1.3), (1.3 2.2)) → P((1.3), (1.3 2.2)).

T0.15 ∀x∀y (PPx,y → ¬PPy,x)

E.g., PP((1.3), (1.3 2.2)) → ¬PP ((1.3 2.2), (1.3)).

T0.16 ∀x∀y∀z [(PPx,y ∧ PPy,z) → PPx,z]

E.g., PP((1.3), (1.3 2.2)) ∧ ((1.3 2.2), (1.3 2.2 3.1)) → PP((1.3), (1.3 2.2 3.1))

T0.17 ∀x Ox,x

E.g., (1.2) ∧ (1.2) = (1.2).

T0.18 ∀x∀y (Ox,y = Oy,x))

E.g., O((1.2), (2.2 1.2)) = O((2.2 1.2), (1.2)).

T0.19 ∀x∀y (Ox,y → Cx,y)

E.g., O((1.2), (2.2 1.2)) → C((1.2), (2.2 1.2)).

T0.20 ∀x∀y [(Px,y ∧ Oz,x) → Oz,y]

E.g., P((1.2), (2.2 1.2)) ∧ O((2.2 1.3), (1.2)) → O((2.2 1.3), (2.2 1.2)).

T0.21 ∀x∀y (Px,y → Ox,y)

E.g., P((1.2), (2.2 1.2)) → O((1.2), (2.2 1.2))

T0.22 ∀x∀y (¬DRx,y ≡ Ox,y)

E.g., ¬DR((1.2), (2.2 1.2)) ≡ O((1.2), (2.2 1.2))

T0.23 ∀x∀y∀z [(Px,y ∧ DRz,y) → DRz,x]

E.g., P((1.2), (2.2 1.2)) ∧ DR((3.3), (2.2 1.2)) → DR((3.3), (1.2)).
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T0.24 ∀x ¬ECx,x

E.g., any sub-sign is externally connected with itself; i.e., the intersection of a sub-sign with
itself is non-empty.

T0.25 ∀x∀y (ECx,y ≡ ECy,x)

E.g., if a sign x which is externally connected to a sign y, then y is also externally connected
to x.

T0.26 ∀x∀y (ECx,y → Cx,y)

E.g., every sign that is externally connected is also connected.

T0.27 ∀x∀y (ECx,y → ¬Ox,y)

E.g., every sign x that is externally connected to a sign y, does not overlap with y, i.e. x and y
do not share internal parts.

T0.28 ∀x∀y [Cx,y ≡ (ECx,y ∨ Ox,y)]

E.g., two signs x and y are connected iff they are either externally connected or overlap.

T0.29 ∀x∀y [Ox,y ≡ (Cx,y ∧ ¬ECx,y)]

E.g., a sign x overlaps a sign y iff x and y are connected, but not externally connected.

T0.30 ∀y∀y [¬ECx,y ≡ (Ox,y ≡ Cx,y)]

E.g., if two signs x and y are not externally connected, then x overlaps y, and x is connected
to y.

T0.31 ∀y∀y [¬∃z ECz,x → [Px,y ≡ ∀z (Oz,x → Oz,y)]]

E.g., if there is not sign z, which is externally connected to x, than it follows that [Px,y ≡ ∀z

(Oz,x → Oz,y)]], cf. D0.2.

T0.32 ∀x∀y (TPx,y → P(x,y)

E.g., if a sign x is a tangential part of a sign y, then x is a part of y.

T0.33 ∀x∀y [TPx,y → ∃z (ECz,x ∧ ECz,y)]

E.g., If a sign x is a tangential part of a sign y, then there a sign z, so that z is both connected
to x and to y.
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T0.34 ∀x∀y∀z [(TPz,x ∧ Pz,y ∧ Py,x) → TPz,y]

E.g., if a sign z is a tangential part of a sign x, and z is a part of a sign y, and y is a part of x,
then z is a tangential part of y.

T0.35 ∀x∀y (NTPx,y → Px,y)

E.g., If a sign x is a non-tangential part of a sign y, then x is a part of y.

T0.36 ∀x∀y [NTPx, y → ¬∃z (ECz,x ∧ ECz,y)]

E.g., if a sign x is a non-tangential part of a sign y, then there is not sign z, to which both x
and y are externally connected.

T0.37 ∀x∀y (TPx,y → ¬NTPx,y)

E.g., if a sign x is a tangential part of a sign y, then x cannot be at the same time a non-
tangential part of y.

T0.38 ∀x∀y [TPx,y ≡ (Px,y ∧ ¬NTPx,y)]

E.g., if a sign x that is a part of a sign y, and x is not a non-tangential part of y, then x is a
tangential part of y.

T0.39 ∀x∀y [NTPx,y ≡ (Px,y ∧ ¬TPx,y)]

E.g., If a sign x is a part of a sign y, and x is not a tangential part of y, then it is a non-
tangential part.

T0.40 ∀x∀y [Px,y ≡ (TPx,y ∨ NTPx,y)]

E.g., A sign x that is part of a sign y, is either a tangential or a non-tangential part of y.

T0.41 ∀x (NTPx,x ≡ ¬∃y ECy,x)

E.g., a sign x is a non-tangential part of itself, iff there is is no sign y that is externally
connected to x.

T0.42 ∀x∀y∀z [(NTPx,y ∧ Cz,x) → Cz,y]

E.g., If a sign x is a non-tangential part of a sign y, and a sign z is connected to x, then z is
also connected to y.
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T0.43 ∀y∀y∀z [(NTPx,y ∧ Oz,x) → Oz,y]

E.g., if a sign x is a non-tangential part of a sign y, and if a sign z overlaps x, then z overlaps
y, too.

T0.44 ∀x∀y∀z [(NTPx,y ∧ Cz,x) → Oz,y]

E.g., if a sign x is a non-tangential part of a sign y, and if a sign z is connected to x, then z
overlaps y, too.

T0.45 ∀x∀y∀z [(Px,y ∧ NTPy,z) → NTPx,z]

E.g., if a sign x is a part of the sign y, and y is a non-tangential part of the sign z, then x (too)
is a non-tangential part of z.

T0.46 ∀x∀y∀z [(NTPx,y ∧ Py,z) → NTPx,z]

E.g., if a sign x is a non-tangential part of a sign y, and y is a part of a sign z, then x is a non-
tangential part of z (, too).

T0.47 ∀x∀y∀z [(NTPx,y ∧ NTPy,z) → NTPx,z]

E.g., if a sign x is a non-tangential part of a sign y, and y is a non-tangential part of a sign z,
then x is a non-tangential part of a sign z.

3. Quasi-Boolean calculus

Following Clarke (1981, pp. 208 ss.), X, Y, and Z are taken as variables ranging over sets of
individuals, that is, sub-sets of {x: Cx,x}. The expression x = f’X means “x is identical to the
fusion of the set X”:

D1.1 x = f’X := ∀y [Cy,x ≡ ∃z (z ∈ X ∧ Cy,z)]

Using this definition, we shall define x + y for the quasi-Boolean union, -x for the quasi-

Boolean complement, a* for the quasi-Boolean universal, and x ∧ y for the quasi-Boolean
intersection:

D1.2 x + y := f’[z: Pz,x ∨ Pz,y]

D1.3 -x := f’[y: ¬Cy,x]
D1.4 a* := f’[y: Cy,y]

D1.5 x ∧ y := f’[z: Pz,x ⋅ Pz,y]

In addition to these definitions, we need the following axiom:

A1.1 ∀X (¬X = Λ → ∃x x = f’X)
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In order to display the 47 theorems built on this axiom and the definitions, we follow again
Clarke (1981, pp. 209 ss.):

T1.1 ∀X {¬X = Λ → ∀x [Cx,f’X ≡ ∃y (y ∈ X ∧ Cx,y)]}

T1.2. ∀x (¬X = Λ ≡ ∃x x = f’X)

T1.3 ∀X∀x (x ∈ X → Px,f’X)

T1.4 ∀X∀Y [¬X = Λ ∧ X ⊆ Y) → Pf’X,f’Y]

T1.5 ∀X∀Y [¬X = Λ ∧ X = Y) → f’X = f’Y

T1.6 ∀x x = f’ {x)

T1.7 ∀x x = f’ {y: Py,x}

T1.8 ∀x f’ {x} = f’ {y: Py,x}

We explain here T1.1 – T.18 together. X can be defined in several ways, f.ex. as the set of
the monadic sub-signs, X = {a.1, b.1, c.1}, the set of dyadic sub-signs, X = {a.2, b.2, c.2}, or

the set of triadic sub-signs, X = {a.3, b.3, c.3}, where a, b, c ∈ {1., 2., 3.}. Alternatively, X
can be defined as the trichotomy of firstness, X = {1.a, 1.b, 1.c}, as the trichotomy of
secondness, X = {2.a, 2.b, 2.c}, or as the trichotomy of thirdness, X = {3.a, 3.b, 3.c}, or, e.g.
as the set of diagonal sub-signs, then X = {1.1, 2.2, 3.3} or X = {3.1, 2.1, 1.3}, etc. E.g., if X

= {1.a, 1.b, 1.c}, then ¬X = Λ = {2.a, 2.b, 2.c, 3.a, 3.b, 3.c}.

T1.9 ∀x∀y ∃z z = x + y

E.g., (1.1) + (1.2) = ((1.1), (1.2)) (cf. Toth 2007, p. 144). For the union of sign-classes and
reality thematics cf. Berger (1976).

T1.10 ∀x∀y∀z {Cz,x+y ≡ ∃w [Pw,x ∨ Pw,y) ∧ Cz,w]}

E.g., two sub-signs z = (1.1), and the sum (1.1) + (1.2) = (1.3) are connected, means the
same as that there is a w such that w is a part of x, or w is a part of y, and z and w are
connected.

T1.11 ∀x∀y∀z [Cz,x+y ≡ (Cz,x ∨ Cz,y)]

E.g., let be z = (1.1), x = (1.1), y = (1.2), then z and (x + y) are connected means, that either
z and x are connected, or z and y are connected.

T1.12 ∀X∀Y [¬X = Λ ∧ ¬Y = Λ) → f’X ∨ Y = f’X + f’Y]
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Cf. T1.8.

T1.13 ∀x∀y x + y = f’{x} ∨ {y}

Cf. T1.8.

T1.14 ∀x x + x = x

E.g., (1.2) + (1.2) = (1.2), or generally (a.b) + (a.b) = (a.b).

T1.15 ∀x∀y x + y = y + x

E.g., (1.2) + (1.3) = (1.3) + (1.2).

T1.16 ∀x∀y∀z (x + y) + z = x + (y + z)

E.g. (1.1 + 1.2) + 1.3 = 1.1 + (1.2 + 1.3).

T1.17 ∀x∀yPx,x + y

E.g. if x = (1.1) and x + y = (1.1 + 1.2), then P((1.1), (1.1 + 1.2)).

T1.18 ∀x∀y∀z [(Pz,x ∨ Pz,y) → Pz,x+y]

E.g., P((1.1), (1.3)) ∨ P((1.1), (1.2)) → P((1.3), (1.3 + 1.2)).

T1.19 ∀x∀y∀z (Px,y → Px,y+z)

E.g., P((1.2), (1.2 3.2)) → P((1.2), ((1.2 3.2 2.3)).

T1.20 ∀x∀y∀z (x = y → z + x = z + y)

E.g., if a sign x is even with a sign y, then the union of the sign x any a sign z is even to the
union of the sign y and the sign z.

T1.21 ∀x∀y (Px,y ≡ Px+y, y)

E.g., P((1.2), (1.2 2.2)) ≡ P((1.2 + (1.2 2.2)), (1.2 2.2)).

T1.22 ∀x∀y (Px,y) ≡ y = x + y

E.g., P((1.2, (1.2 2.2)) ≡ (1.2 2.2) = (1.2 + 1.2 2.2).

T1.23 ∃x x = a*

Cf. A1.1
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T1.24 ∀x [Cx,a* ≡ ∃y (Cy,y ∧ Cx,y)]

E.g., if both x and y als elements of the set of prime-signs {1, 2, 3}, then Cy,y ∧ Cx,y already
scoops out all the elements of the set of sub-signs {(1.1), (1.2), (1.3), (2.1), (2.2), (2.3), (3.1),
(3.2), (3.3)}.

T1.25 ∀x Px,a*

Cf. T1.24. Since a* = {y: Cy,y} (D1.4), each x ∈ signs {(1.1), (1.2), (1.3), (2.1), (2.2), (2.3),
(3.1), (3.2), (3.3)} is a part of a*.

T1.26 ∀x Cx,a*

According to T0.11, we have: ∀x∀y (Px,y → Cx,y), and since the set of sub-signs fulfills ∀x
Px,a* (T1.25), this implies T1.26.

T1.27 ∀x Ox,a*

Since the set of sub-signs fulfills T1.25 and since we have T0.21: ∀x∀y (Px,y → Ox,y), it
follows immediately that the set of sub-signs fulfills T1.27, too.

T1.28 ∀x x + a* = a*

Since a* = {y: Cy,y}, the union of any x ∈ signs {(1.1), (1.2), (1.3), (2.1), (2.2), (2.3), (3.1),
(3.2), (3.3)} with a* = a*.

T1.29 ∀x (∀y Py,x ≡ x = a*)

Since a* = {y: Cy,y} (D1.4), T1.29 follows immediately from T1.25 and T1.26.

T1.30 ∀x (∀y Cy,x ≡ x = a*)

According to T0.11, we have: ∀x∀y (Px,y → Cx,y), so T1.30 follows directly from T1.29.

T1.31 ∀x ¬ECx,a*

E.g., since a* = {y: Cy,y}, the semiotic connection must have internal points.

T1.32 ∀x (∃y y = ¬x ≡ ¬x = a*

E.g., let be x = (3.a), then one possible negate is (a.3), where a ∈ {1, 2, 3}. However, because
of T1.8, it follows for semiotics, that every sub-sign (a.b) can substitute its own negate!
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T1.33 ∀x {∃z z = -x → ∀y [Cy,-x ≡ ∃z (¬Cz,x ∧ Cy,z)]}

E.g., if z = -x, then the connection Cy,-x excludes the existence of ¬C-x,x, i.e. the
connection of a sign x with its complement (cf. Toth 2007, p. 143).

T1.34 ∀x [∃z z = -x → ∀y (Cy,-x ≡ ¬Py,x)]

E.g., if two signs y and –x (i.e. the complement of x) are connected, then y cannot be a part
of x.

T1.35 ∀x (∃z z = -x → x = --x

E.g., the complement of the complement (or the negate of the negative, respectively) of a
sign is the sign itself.

T1.36 ∀x [∃z z = -x → ∀y (¬Cy,x ≡ Py,-x)]

E.g., if a sign y is not connected to a sign x, then y is a part of the complement of x.

T1.37 ∀x (∃z z = -x → ¬Cx,-x)

E.g., a sign x can never be connected to its complement.

T1.38 ∀x [∃z z = -x → ∀y (x = y → -x = -y)]

E.g., if two signs x and y are connected to one another, then their complements are
connected, too.

T1.39 ∀x (∃z z = -x → ∀y Py,x+-x)

E.g., if a sign z = -x, then y is a part of the union of x and its complement.

T1.40 ∀x∀y [(∃z z = -x ∧ ∃z z = -y) → Px,y ≡ P-y,-x)]

E.g., if a sign x is a part of a sign y, then the complement –y is a part of the complement –x,
too.

T1.41 ∀x (∃z z = -x → x + -x = a*)

E.g., the union of all signs x and their complements –x is even to the semiotic quasi-Boolean
universal.

T1.42 ∀x∀y (∃z z = x ∧ y ≡ Ox,y)

E.g., let be x = (3.1 2.2 1.3) and y = (3.1 2.2 12), then x overlaps y, since the intersection x ∧
y = (3.1 2.2).
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T1.43 ∀x∀y (∃w w = x ∧ y → ∀z {Cz,x∧y ≡ ∃w [(Pw,x ∧ Pw,y) ∧ Cz,w]})

E.g., x = (3.1 2.2 1.3), y = (3.1 2.2 1.2), z = (3.1 2.1 1.1). Then, w = (3.1 2.2), and C((3.1 2.1

1.1), (3.1 2.2)) = (P((3.1 2.2), (3.1 2.2 1.3)) ∧ P((3.1 2.2), (3.1 2.2 1.2))) ∧ C((3.1 2.1 1.1), (3.1
2.2)).

T1.44 ∀x∀y {∃w w = x ∧ y → ∀z [Cz,x∧y → (Cz,x ∧ Cz,y)]}

E.g., if a sign z is connected to the intersection of two signs x and y, then z is both
connected to x and to y.

T1.45 ∀x∀y {∃w w = x ∧ y → ∀z [(Pz,x ∧ Pz,y) ≡ Pz,x∧y]}

E.g., if a sign z is a part of a sign x and also a part of a sign y, then z is a part of the
intersection of x and y, too.

T1.46 ∀x∀y {[(∃z z = -x ∧ ∃z z = -y) ∧ ∃z z = x ∧ y] → x ∧ y = -(-x + -y)}

E.g., if a sign z can take the values of –x, -y, and x ∧ y, then the intersection of x and y is
even to the complement of the union of the complements of x and y.

T1.47 ∀x x ∧ x ≡ x

E.g., (3.1 2.1 1.3) ∧ (3.1 2.1 1.3) = (3.1 2.1 1.3).

T1.48 ∀x∀y (∃z z = x ∧ y → x ∧ y = y ∧ x

E.g., (3.1 2.1 1.3) ∧ (3.1 2.2 1.3) = (3.1 2.2 1.3) ∧ (3.1 2.1 1.3).

T1.49 ∀x∀y∀z {[((∃w w = x ∧ y) ∧ (∃w w = y ∧ z) ∧ (∃w w = (x ∧ y) ∧ z] → (x ∧ y) ∧ z

= x ∧ (y ∧ z)}

E.g., ((3.1 2.2 1.3) ∧ (3.1 2.2 1.2)) ∧ (3.1 2.3 1.3) = (3.1 2.2 1.3) ∧ ((3.1 2.2 1.2) ∧ (3.1 2.3
1.3)).

T1.50 ∀x∀y (∃z z = x ∧ y → Px∧y,x)

E.g., the intersection of two signs x and z are part of the sign x.

T1.51 ∀x∀y [∃z z = x ∧ y → (Px,y ≡ x = x ∧ y)]

E.g., if a sign x is a part of a sign y, then the intersection of x and y is a part of y.
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T1.52 ∀x∀y [∃w w = x ∧ y → ∀z (Px,y → Px∧z,y)]

E.g., if a sign x is a part of a sign y, then the intersection of x with a sign z is a part of y, too.

T1.53 ∀x∀z [∃w w = x ∧ z → ∀y (x = y → x ∧ z = y ∧ z)]

E.g., if sign x is substituted by a sign y, then the intersection of x and z is even to the
intersection of y and z.

T1.54 ∀x∀y {∃w w = x ∧ y → ∀z [NTPz,x∧y → (NTPz,x ∧ NTPz,y)]}

E.g., a sign z is a non-tangential part of the intersection of two signs x and y, if z is a non-
tangential part of both x and y.

T1.55 ∀x x ∧ a* = x

E.g., the intersection of a sign-class x with all other nine sign-classes of the set of the ten
sign-classes is the set containing the sign-class x.

T1.56 ∀x∀y {[(∃z z = -x) ∧ (∃z z = -y) ∧ ¬ECx,-y] → (-x + y = a* ≡ Px,y)}

E.g., if there is no external connection of a sign x to a the complement of a sign y, then the
union of the complement of the sign x and the sign y is even to a*, i.e. the semiotic quasi-
Boolean universal, which statement means the same like that x is a part of y.

4. Quasi-topological calculus

Following Clarke (1981, p. 212), we shall now introduce the quasi-topological operators, ix
for the interior of x, cx for the closure of x, and ex for the exterior of x, and quasi-
topological predicates as OPx for “x is open”, and CLx for “x is closed”:

D2.1 ix := f’{y: NTPy,x}

D2.2 cx := f’ {y: ¬Cy,i-x}

D2.3 ex := f’ {y: NTPy,-x}

D2.4 OPx := x = ix

D2.5 CLx := x = cx

Further, we need the following axiom:

A2.1 ∀x (∃z NTPz,x ∧ ∀y ∀z {[(Cz,x → Oz,x) ∧ (Cz,y → Oz,y)] → (Cz,x∧y →

Oz,x∧y)})
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E.g., if the connection of two signs z and x implies the overlap of z over x, and if the
connection of two signs z and y implies the overlap of z over y, then the connection of z and
the intersection of x and y implies the overlap of z and the intersection of x and y.

In displaying the following 45 theorems, we will again follow Clarke (1981, pp. 213 ss.):

T2.1 ∀x ∃y y = ix

E.g., the distinction between interior, exterior, closure, open and closes sets is valid for
semiotic sets, too.

T2.2 ∀x∀y [Cy,ix ≡ ∃z (NTPz,x ∧ Cy,z)]

E.g., if a sign y is connected to the interior of a sign x, then there is a z such that z is a non-
tangential part of x, and y is connected to z.

T2.3 ∀x∀y (NTPy,x → Py,ix)

E.g., if a sign y is a non-tangential part of a sign x, the y is a part of the interior of x.

T2.4 ∀x Pix,x

E.g., the interior of a sign x is a part of x.

T2.5 ∀x∀y (Cy,ix → Oy,x)

E.g., if a sign y is connected to the interior of a sign x, then y overlaps x.

T2.6 ∀x∀y (ECy,x → ¬Cy,ix)

E.g., if a sign y is externally connected to a sign x, then y is not connected to the interior of
x.

T2.7 ∀x∀y (ECy,x → ¬ECy,ix)

E.g., if a sign y is externally connected to a sign x, then y is not externally connected to the
interior of x.

T2.8 ∀x∀y (Py,ix → Py,x)

E.g., if a sign y is connected to the interior of x, then y is a part of x.

T2.9 ∀x NTPix,x

E.g., the interior of a sign x is a non-tangential part of x.
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T2.10 ∀x ¬TPix,x

E.g., the interior of a sign x is not a tangential part of x.

T2.11 ∀x∀y (Py,ix ≡ NTPy,x)

E.g., the statement that a sign y is a part of the interior of a sign x is equivalent to the
statement that y is a non-tangential part of x.

T2.12 ∀x∀y∀z [(NTPx,y ∧ Cz,x) → Cz,iy]

E.g., if a sign x is a non-tangential part of a sign y, and a sign z is connected to x, then z is
connected to the interior of y.

T2.13 ∀x∀y∀z [(NTPx,y ∧ Oz,x) → Oz,iy]

E.g., if a sign x is a non-tangential part of a sign y, and if a sign z overlaps x, then z overlaps
the interior of y.

T2.14 ∀x∀y (Px,y → Pix,iy)

E.g., if a sign x is a part of a sign y, then the interior of x is (also) a part of the interior of y.

T2.15 ∀x∀y (x = y → ix = iy)

E.g., if two signs x and y are even, then their interiors are even, too.

T2.16 ∀x ix + x = x

E.g., the union of a sign and its interior is this sign.

T2.17 ∀x ix ∧ x = ix

E.g., the intersection of a sign and its interior is this interior.

T2.18 ∀x (NTPx,x ≡ ix = x)

E.g., the statement that a sign x is a non-tangential part of itself is equivalent to the
statement that x is even to its interior.

T2.19 ∀x∀y (Ox,y ≡ Oix,ix)

E.g., the statement that a sign x overlaps a sign y is equivalent to the statement that the
interior of a sign x overlaps the interior of a sign y.
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T2.20 ∀x∀y (Ox,y ≡ Ox,iy)

E.g., the statement that a sign x overlaps a sign y is equivalent to the statement that x
overlaps the interior of y.

T2.21 ∀x∀y (Cx,iy ≡ Ox,y)

E.g., the statement that a sign x is connected to the interior of a sign y is equivalent to the
statement that x overlaps y.

T2.22 ∀x∀y (Cx,iy ≡ Ox,iy)

E.g., the statement that a sign x is connected to the interior of a sign y is equivalent to the
statement that x overlaps the interior of y.

T2.23 ∀x∀y (Cix,iy ≡ Oix,iy)

E.g., the statement that the interior of a sign x is connected to the interior of a sign y is
equivalent to the statement that the interior of x overlaps the interior of y.

T2.24 ∀x∀y (∃z z = x ∧ y ≡ ∃z z = ix ∧ iy)

E.g., two sign x and y intersect iff their interiors intersect.

T2.25 ∀x∀y ¬ECx,iy

E.g., a sign x cannot be externally connected to the interior of a sign y.

T2.26 ∀x Pix,iix

E.g., the interior of a sign x is part of itself.

T2.27 ∀x iix = ix

E.g., the interior of the interior of a sign x is even to the interior of this sign x.

T2.28 ia* = a*

E.g., the interior of the semiotic universal is even to the universal.

T2.29 ∀x∀y (∃z z = x ∧ y → Pix∧iy,x∧y)

E.g., if two signs x and y intersect, then the intersection of their interiors is a part of the
intersection of the signs.
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T2.30 ∀x∀y (∃z z = x ∧ y → Pi(x∧y),ix∧iy)

E.g., if two signs x and y intersect, then the interior of their intersection is a part of the
intersection of their interiors.

T2.31 ∀x∀y {∃w w = x ∧ y → ∀z [NTPz,x ∧ NTPz,y) ≡ NTPz,x∧y]}

E.g., if a sign z is a non-tangential part of a sign x and a non-tangential part of a sign y, then
it is also a non-tangential part of the intersection of x and y.

T2.32 ∀x∀y (∃z z = x ∧ y → ix ∧ iy = i(x ∧ y))

E.g., the intersection of the interior of a sign x and the interior of a sign y is the same as the
interior of the intersection of these two signs.

T2.33 ∀x (∃z z = cx ≡ ∃y ¬Cy,i-x)

E.g., if a sign z is the closure of a sign x, this means that there is a sign y such that y is not
connected to the interior of the complement of x.

T2.34 ∀x {∃z z = cx → ∀w w [Cw,cx ≡ ∃y ¬Cy,i-x ∧ Cw,y)]}

E.g., if a sign w is connected to the closure of a sign x, then this means that a sign y is not
connected to the interior of the complement of x, and w is connected to y.

T2.35 ∀x (∃z z = -x → ∃z z = cx)

E.g.,  a sign that has a complement, has also a closure.

T2.36 ∀x [∃z z = -x → ∀w (Cw,cx ≡ ¬NTPw,-x)]

E.g., ∀x [∃z z = -x → ∀w (Cw,cx ≡ ¬NTPw,-x)]

E.g., if a sign w is connected to the closure of a sign x, then w cannot be a non-tangential
part of the complement of x.

T2.37 ∀x (∃z z = -x → cx = -i-x)

E.g., if a sign z is the complement of a sign x, then the closure of x is even to the
complement of the interior of the complement of x.

T2.38 ∀x (∃z z = -x → i-x = -cx)

E.g., if a sign z ist the complement of a sign x, then the interior of the complement of x is
even to the complement of the closure of x.
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T2.39 ∀x (∃z z = -x → c-x = -ix)

E.g., if a sign z is the complement of a sign x, then the closure of the complement of x is
even to the complement of the interior of x.

T2.40 ∀x (∃z z = -x → ix = -c-x)

E.g., if a sign z is the complement of a sign x, then the interior of x is even to the
complement of the closure of the complement of x.

T2.41 ∀x (∃z z = -x → Px,cx)

E.g., if a sign z is the complement of a sign x, then x is a part of its closure.

T2.42 ∀x (∃z z = -x → ccx = cx)

E.g., if a sign z is the complement of a sign x, then the complement of the complement of x
is even to the (simple) complement of x.

T2.43 ∀x∀y {[(∃z z = -x ∧ ∃z z = -y) ∧ (∃z z = -x ∧ -y)] → cx + cy = c(x+y)}

E.g., the union of the complement of a sign a with the complement of a sign y is even to the
complement of the union of x and y.

T2.44 ∀x∀y [(∃z z = -x ∧ ∃z z = -y) → Px,y → Pcx,cy)]

E.g., if a sign x is a part of a sign y, then the complement of x is a part of the complement of
y, too.

T2.45 ∀x (∃z z = -x → ex = i-x)

E.g., if a sign z is the complement of a sign x, then the exterior of x is even to the interior of
the complement of x.

The calculi of extensional logical sign connections established in this study for a semiotic
mereology, a semiotic quasi-Boolean algebra and a semiotic quasi-topology complete the
system of the purely semiotic sign connections established in Toth (2008a).
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