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Prof. Dr. Alfred Toth

Discrete Subgroups of the semiotic Euclidean group

Mit seiner Dampfmaschine treibt
er Hut um Hut aus seinem Hut
und stellt sie auf in Ringelreihn
wie man es mit Soldaten tut.

Dann grüßt er sie mit seinem Hut
der dreimal grüßt mit einem du.
Das traute sie vom Kakasie
ersetzt er durch das Kakadu.

Er sieht sie nicht und grüßt sie doch
er sie mit sich und läuft um sich.
Die Hüte inbegriffen sind
und deckt den Deckel ab vom Ich.

Hans Arp (1963, p. 83)1

1. In the R2-model of the Euclidean plane, the set of all isometries is the Euclidean group E2

with the composition of transformations as the binary operation. There are four types of
isometries: translations, rotations, reflections, and glide reflections. The set of all translations
T2 is the translational subgroup T2 of E2, T2 < E2. The set of rotations with the origin as a
center, and reflections in lines containing the origin, represents the subgroup O2 of E2, O2 <
E2. This is the orthogonal subgroup of the Euclidean group, denoted as O2. Every element
of E2 can be represented as a composition of one rotation with the origin as a center or one

reflection in a line passing through the origin, and one translation. Thus, every element ε ∈

E2 can be represented as ε = στ, where σ ∈ O2 and τ ∈ T2. From this relationship follows

that E2 is the semidirect product of its subgroups O2 and T2. We see that O2 ∩ T2 = ε, where

ε is the identity transformation. Hence, every element of E2 we can decompose in the
product of elements of O2 and T2 in a unique way (cit. Kozomara 1998)2.

The isometries are represented as follows:

(a) Translation by a vector v as (v, I), where I is the unit 2×2 matrix;

(b) Rotation counterclockwise, through the angle θ about x, as (x - xMτ, M), where

cosθ - sinθ
M = 

sinθ – cos θ

                                                                                

1 Literal (but bumpy) translation: “With his steam engine he pushes / hat and hat out of his hat / and lines
them up in a merry-go-round /as one does it then with soldiers. // Then he greets them with his hat / who
three times does greet by a thou / The familiar “you” of “cocka-you” / He replaces by a “cocka-thou”.// He
does not see, but greets them though / he them with himself and runs about himself. / The hats, they are
included then / and so he uncovers the lid of the I”.
2 The further definitions are taken partly literally from Armstrong (1988) and Kozomara (1998).
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(c) Reflection in a line pm as (2a, N), where the image of p derived by the translation a is the
line p‘ that contains the origin:

cosψ - sinψ
N = 

sinψ – cos ψ

and ψ is the slope of p;

d) Glide reflection by a vector b, in a line that translated by b contains the origin, is
represented as (2a+b, N), with N defined as in (c).

2. That there is a semiotic Euclidean group follows from previous studies (cf. Toth 2002,
2007, pp. 37 ss., 52 ss.; 2008a, pp. 57 ss). In this study, we will restrict ourselves to discrete
subgroups of the semiotic Euclidean group. According to the number of independent trans-
lations contained in a particular group, there are three classes of discrete subgroups of
Euclidean group E2. The first is the class of discrete subgroups of E2 without translations –
the symmetry group of rosettes. This class is infinite. The second class contains the groups
with a translation subgroup generated by one single translation – the symmetry group of
friezes. That class contains 7 non-isomorphic symmetry groups. The third class is the
wallpaper groups. Their translation subgroup is generated by two independent translations,
and this class contains 17 non-isomorphic groups.

2.1. The semiotic symmetry groups of rosettes

A subgroup D of DE2 is the symmetry group of rosettes if it does not contain translations.
The elements of a rosette group are the symmetries of a rosette. The rotational subgroup of

a rosette group R is generated by a rotation R = <Mθ>, θ ∈ [0, 2π]. In the case that OR

contains only direct transformations, the unique possibility is R = <M[(2π/m]>. Such a rosette
group is isomorphic to a cyclic group Cm.

In order to show the different symmetries, I use the framework of my “General Sign
Grammar” (Toth 2008b) on the one side and the theory of semiotic transpositions (Toth
2008a, pp. 159 ss.) on the other side. Here are some examples for semiotic rosettes:

5      4

   I O’ M’ ≡ I
     1 2 3

M O   I’≡M   O 6        7
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1 = M ≡ M’’’ 5 = I ≡ M’’

2 = O ≡ I’’ ≡ O’’’ ≡ I’ ≡ I’’’’’ 6 = O’’’ ≡ O’’’’

3 = M’ ≡ O’’’’’ 7 = M’’’’ ≡ O’’’’’

4 = I’ ≡ O’’

Let OR contain n indirect transformations and a rotation M of the order m, so the number of
rotations in OR is m. Hence, for an indirect transformation S, the compositions SM, SM2, ...,

SMm are mutually different indirect transformations from OR, so m ≤ n. On the other hand,
compositions SM, SM2, ..., SMm are mutually different direct transformations from OR, and

we have n ≤ m. Therefore, m = n. We see that all indirect transformations from R have the

form (0, M[l(2π/m]) (0, S), where l ∈ N and S is an indirect transformation from OR. Hence, R

= <(0, M[(2π)/m),(0, S)>. Such a group R is isomorphic to a dihedral group Dm, and we will
illustrate it again by the following semiotic symmetries:

I I’ M’’’ O’’’ ≡ O’’’’ M’’’’

     I ≡ I’’’ I’ ≡ I’’’’

M O ≡ O’ M’

M   O ≡ O’ M’

2.2. The semiotic symmetry group of friezes

A subgroup B of DE2 is the symmetry group of friezes if its translational subgroup is
generated by one translation. If the translation by a vector a generates TB then the lattice is

the set of points R = {na | n ∈ Z}. By θ will be denoted the matrix of rotation about the

origin through the angle θ, and by Sϕ the reflection in the line passing through the origin of

slope ϕ/2. Since in the classification of the frieze groups, the vector a will be considered as
collinear to the x-axis and since every point of the lattice belongs to the x-axis, we find that
the point group of every frieze group B must leave the x-axis invariant, and the only possible

transformations contained in the orthogonal group OB are: I, -I, S0, and S[(π/2]. By choosing
possible orthogonal groups for the frieze groups, respecting the condition that it must leave
the lattice invariant, there are 7 non-isomorphic frieze groups.
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With regard to OB, we have the following possibilities:

1. OB = {I}. B = TB.

  I   I’   I’’ I’’’

...

M O ≡ M’ O’ ≡ M’’ O’’ = M’’’ O’’’

2. OB = <-I>{I, -I}. B = TB ∪ TB (0, -I).

    I ≡ M’    O’ ≡ I’’ ≡ M’’’   O’’’ ≡ I’’’’

...

M O ≡ I’ ≡ M’’ O’’ ≡ I’’’ ≡ M’’’’ O’’’’

3. OB = <S0>{I, S0}. Let S0 be realized as (αa, S0).

a) In the case that S0 is realized as a reflection: B = TB ∪ TB (0, S0)

  3   5  7  9

2 4 5 =  6

1 2 3 4 5 8

10 11 12 13

1 = M ≡ M’ 8 = O’’’’’’ ≡ O’’’’’’’

2 = O ≡ O’ ≡ M’’ = M’’’ 9 = I’’’’’’
3 = I 10 = I’

4 = O’’ ≡ O’’’ ≡ M’’’’ ≡ M’’’’’ 11 = I’’’
5 = I’’ 12 = I’’’’’

6 = O’’’’ ≡ O’’’’’ ≡ M’’’’’’ ≡ M’’’’’’’ 13 = I’’’’’’’
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7 = I’’’’

b) The other possibility is that the frieze group does not contain S0, (0, S0) ∉ B. Then α ∉ Z.

Since (αa, S0)
2 = (2α, a, I), we have that α = n + ½, n ∈ Z. So, S0 is realized as a glide

reflection: B = TB ∪ TB (½ a, S0).

   I I’’

   O ≡ M’ O’ ≡ M’’ O’’ ≡ M’’’ O’’’
    

M

      I’ I’’’

4. OB = <S[π/2]>{I, S[π/2]}. The S[π/2] in B must be realized as a reflection. In B there is no

translation by a vector normal to x-axis. Hence: B = TB ∪ TB (0, S[π/2])

   I   I’ I’’ I’’’

M

O ≡ O’ M’ ≡ M’’ O’’ ≡ O’’’ M’’’

5. OB = <S0, S[π/2]>{I, -I, S0, S[π/2]}. There are two possibilities:

a) S0 is realized as a reflection: B = TB ∪ TB (0, -I) ∪ TB (0, S0) ∪ TB (0, S[π/2])

3 5 7

2 4 6
1

8 9 10
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1 = M ≡ M’ 6 = O’’’’ ≡ O’’’’’

2 = O ≡ O’ ≡ O’’ ≡ O’’’ 7 = I’’’’
3 = I 8 = I’

4 = M’’ ≡ M’’’ ≡ M’’’’ = M’’’’’ 9 = I’’’
5 = I’’ 10 = I’’’’’

b) S0 is not realized as a reflection. Then, S0 in B is realized as ((n + ½)a, S0) and we have

that –I is realized as ((n + ½)a, S0)(0, Sπ/2) = ((n + ½)a, -I). B = TB ∪ TB (0, -I) ∪ TB (½a, S0)

∪ TB (0, S[π/2)

I I’      I’’’’   I’’’’’

M’ ≡ M’’ O’’ ≡ O’’’

M O ≡ O’ M’’’ ≡ M’’’’ O’’’’ = O’’’’’  M’’’’’

I’’ I’’’

The above types of symmetry correspond to Bense’s sign operation of “adjunction” (Bense
1971, p. 52; Toth 2008b, pp. 20 ss.). In the next chapter, we will find several groups that
correspond also to semiotic “iteration” and superization” (Bense 1971, pp. 54 ss.; Toth
2008b, pp. 20 ss.)

2.3. The semiotic wallpaper groups

A subgroup K of DE2 is the wallpaper group if its transitional subgroup is generated by two

translations. The lattice consists of points ma + nb, m, n ∈ Z, where translations by
independent vectors a and b generate TK. Without loss of generality, let:

1. |a| ≤ |b| (otherwise a ↔ b)

2. |a – b| ≤ |a + b| (otherwise a → -b)

Thus, we have the following possible relations between |a|, |b|, |a - b|, |a + b|:

1. |a| < |b| < |a - b| < |a + b| (oblique lattice)

2. |a| < |b| < |a - b| = |a + b| (rectangular lattice)

3.1. |a| < |b| = |a - b| < |a + b| (centered rectangular lattice)

3.2. |a| = |b| < |a - b| < |a + b| (centered rectangular lattice)

4. |a| = |b| < |a - b| = |a + b| (square lattice)
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5. |a| = |b| = |a - b| < |a + b| (hexagonal lattice)

There are only four non-trivial rotations through the angles [2π/6], [2π/4], [2π/3], [2π/2],
i.e. the rotations of the order 6, 4, 3, 2, respectively. Every orthogonal group of a wallpaper
group is finite, because the wallpaper group is discrete, so it contains the rotations through

the angles [2π/k], k ∈ Z. Since the vectors a and b that generate TK are independent, they
represent the basis of R2. If we combine each lattice with an orthogonal group, there are 17
non-isomorphic wallpaper groups. For every TK and its orthogonal group OK, the wallpaper

group will be TK ∪ Xi ∈ OK (τ, X), where τ ∈ TK and (τ, Xi) represents the realization of Xi

from OK in K.

1. As for the oblique lattice, R, |a] < |b| < |a - b| < |a + b|, the only element of OD that

preserves R is the rotation through ϕ about the origin, so OK ⊂ {± I}.

1.1. If the only rotation in K is the identity I, we get the simplest case: the wallpaper group

generated by translations, K = {(ma + nb, I) | m, n ∈ Z}.

I’’’’

I’’’ ≡ M’’’’ O’’’’

I’’ ≡ M’’’  O’’’

M’’  O’’ ≡ I’

M’  O’ ≡ I

M O

This symmetry group corresponds to Bense’s sign-operation of superization (cf. Bense 1971,
pp. 53 ss.) with at the same time rising and falling cascades (cf. Toth 2008b, pp. 62 ss.).
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1.2. OK contains –I. We get K = TK {(0, I), (0, -I)}, that is the union of two neighboring
classes of TK. The elements of K, not belonging to TK, are (ma + nb, I) (0, -I) = (ma + nb,

I), m, n ∈ Z, which means that the elements are translations and half-turns about the points
(½ a + ½ nb).

1 2 3

4 5
  6 7

8 9 10

1 = O’ 6 = O ≡ I’’ ≡ M’’’ ≡ M’’’’’’ ≡ I’’’’’’’

2 = M’ ≡ I ≡ O’’ 7 = O’’’

3 = M’’ ≡ I’’’ 8 = I’’’’ ≡ M’’’’’

4 = O’’’’ 9 = O’’’’’ ≡ I’’’’’’ ≡ M’’’’’’’

5 = M ≡ I’ ≡ M’’’’ ≡ I’’’’’ ≡ O’’’’’’ 10 = O’’’’’’’

2. |a| < |b| < |a - b| = |a + b|

Here, except the coincidence, we have the transformations –I, S0 and Sπ preserving the
lattice.

2.1. For OK = {I, S0} there are two possibilities.

2.1.1. S0 is realized in K as a reflection (0, S0). K = TK ∪ TK (S0).

5 6 7

2 3

1 4
8 9   10

11
12 13 14
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1 = M 8 = (I’’’) ↔ (M → O)

2 = O ≡ O’ 9 = (I’’’’) ↔ (M’ → O’)

3 = M’ ≡ M’’ 10 = (I’’’’’) ↔ (M’’ → O’’)
4 = O’’ 11 = M’’’

5 = I 12 = O’’’ ≡ O’’’’

6 = I’ 13 = M’’’’ ≡ M’’’’’
7 = I’’ 14 = O’’’’’

2.1.2. S0 is realized in K as a glide reflection, so K contains (0, S0). This is the glide reflection
(½a, S0).

  5   6  7

2 3

1 4

8
  9  10 11

1 = M 7 = I’’’’

2 = O ≡ I’ ≡ M’’ 8 = O’

3 = O’’ ≡ I’’’ ≡ M’’’’ 9 = M’ ≡ O’’’

4 = O’’’’ ≡ I’’’’’ 10 ≡ M’’’ ≡ O’’’’’
5 = I 11 = M’’’’’
6 = I’’

2.1.3. OK is {I, -I, S0, Sπ}. If S0 and Sπ are realized as reflections, K = TK ∪ X ∈ OK (O, X).

  5   6   7

2 3
1 4

  8    9 10
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1 = O ≡ O’ 6 = I’’

2 = M ≡ M’ ≡ M’’ ≡ O’’’ 7 = I’’’’

3 = O’’ ≡ O’’’’ ≡ M’’’ ≡ O’’’’’ 8 = I’

4 = M’’’’ ≡ M’’’’’ 9 = I’’’
5 = I 10 = I’’’’’

2.1.4. The only element of orthogonal group realized as a reflection is (0, Sπ). The

transformation –I from OK is realized as (½, S0) (0, Sπ) = (½ a, -I). K = TK ∪ TK (0, S0) ∪

TK (0, Sπ) ∪ TK (½ a, -I).

  7   8       9 10

2 5
1  3 4 6

11 12

1 = O 7 = I

2 = M ≡ M’ ≡ O’’ 8 = I’

3 = O’ ≡ M’’ ≡ M’’’ 9 = I’’’’

4 = O’’’ ≡ O’’’’ 10 = I’’’’’

5 = M’’’’ ≡ M’’’’’ 11 = I’’
6 = O’’’’’ 12 = I’’’

2.1.5. The third case occurs when K does not contain the reflections. Thus, S0 is realized as

(½ a, S0), and Sπ as (½ b, Sπ). –I is realized as (½ a, S0) (½ b, Sπ) = (½ (a – b), -I). K = TK ∪

TK (½ a, S0) ∪ TK (½ b, Sπ) ∪ TK (½ (a – b), -I).

4 5

  2

1 6  7      3

   8   9
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1 = M 6 = I’ ↔ (M → O)

2 = O ≡ I’’’ ≡ M’’’’ 7 = (M’’’’ → O’’’’) ↔ (M’’ → O’’)
3 = O’’’’ 8 = O’

4 = I ≡ O’’’ 9 = M’ ≡ I’’

5 = M’’’ ≡ I’’’’

3. |a | < |b| = |a - b| < |a + b|

The elements of OK are I, -I, S0, Sπ. In order to avoid isomorphic groups, we take that K,
where the reflections from OK are realized as both reflections and glide reflections.

3.1. In the case that OK = {I, S0}, S0 is realized as a reflection (2(b – a), S0), and glide

reflection as (½(2(b – a) + a/2, S0) = (b, S0), we have K = TK ∪ TK (b, S0).

 13 15

  3   5
11    12

2 14
4 18 20

1
   8   10

16  17 19
6

7 9

1 = M 6 = M’’ 11 = M’’’’ ↔ (M’ → I’)

2 = O ≡ O’ 7 = O’’ ≡ O’’’ 12 = O’’’’ ≡ O’’’’’

3 = I 8 = I’’ ↔ (M → O) 13 = I’’’’
4 = M’’ 9 = M’’’ 14 = M’’’’’

5 = I’’ 10 = I’’’ ↔ (O’ ↔ M’) 15 = I’’’’’

16 = M’’’’’’ ↔ (M’’’ → I’’’)

17 = O’’’’’’ ≡ O’’’’’’’

18 = I’’’’’’ ↔ (M’’’’ → O’’’’)
19 = M’’’’’’’

20 = I’’’’’’’ ↔ (O’’’’’ → M’’’’’)
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3.2. In the case that OK = {I, -I, S0, Sπ), we have K = TK ∪ TK (b, S0) ∪ TK (a, Sπ).

2
1 4

3 5

6 8
7

1 = O 5 = I’’ ≡ I’’’

2 = M ≡ M’’ 6 = O’

3 = I ≡ I’ 7 = M’ ≡ M’’’
4 = O’’ 8 = O’’’

4. |a| = |b| < |a - b| = |a + b|

4.1. In the case OK = <M[π/2]>, we have K = TK ∪ TK (0, Mπ/2) ∪ TK (0, Mπ) ∪ TK (0,

M3π/2).

6

     2

1 5
4    7
3 11 9

10

  8

12

1 = I 5 = O’ 9 = I’’
2 = O 6 = I’ 10 = O’’’

3 = M ↔ (O’’’ → M’’’) 7 = M’’ ↔ (M’ → O’) 11 = M’’’ ↔ (M’’ ↔ O’’)

4 = M’ ↔ (M → O) 8 = O’’ 12 = I’’’
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4.2. In the case S0 ∈ OK, OK = {I, M[π/2], -I, M[3π/2], S0, S[π/2], Sπ, S[[π/2]}

4.2.1. S0 is realized as a reflection

12 11 1 = M

10 2 = O ≡ O’

3 = I ≡ I’’’’’’
14 9 4 = M’

5 = I’ ≡ I’’
6 = M’’

13 8 7 = O’’ = O’’’

8 = I’’’ ≡ I’’’’
9 = M’’’

15 7 10 = M’’’’

11 = O’’’’ ≡ O’’’’’
      3 5 12 = M’’’’

13 = I’’’’ ≡ I’’’’’
14 = M’’’’’

16 6 15 = O’’’’’ ≡ O’’’’’’
16 = M’’’’’’

1   2 4

4.2.2. S0 is not realized as a reflection. Let S0 be realized as (αa + βb, S0), so (αa + βb, S0)
2 =

(2α, S0) ∈ K.
   14

3 4     11

5
15 13

2 12
8 19

1  10 18 17

6 16

9
7 20

1 = O 11 = M’’’’

2 = M ↔(M’’’ → O’’’) ≡ M’ 12 = M’’’’’’ ↔ (O’’’’ → M’’’’)
3 = I 13 = O’’’’’’
4 = O’ 14 = I’’’’’’

5 = I’ ≡ I’’’’ 15 = M’’’’’’’ ↔ (M’’’’’’ → O’’’’’’)
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6 = I’’ 16 = O’’’’’’’
7 = O’’ 17 = I’’’’’’’

8 = M’’ ↔ (O → M) ≡ M’’’ 18 = O’’’’’

9 = I’’’ 19 = M’’’’’ ↔ (M’’’’’’’ → O’’’’’’’)
10 = O’’’ 20 = I’’’’’

5. |a| = |b| = |a - b| < |a + b|. Since S0 M[kπ/3] = S[kπ/3], and all of them are realized as
reflections in K.

5.1. OK is generated by M[π/3]. Here K = TK ∪k=1,...5 (0, M[kπ/3]).

1 2 3

6 8

4 5

10 11
7 9

12 14
13

1 = O 8 = O’’

2 = M ≡ O’ 9 = M’’
3 = M’ 10 = I’’’’

4 = I ↔ (M’’’’’ → I’’’’’) 11 = I’’’

5 = I’ ↔ (I’’ → O’’) 12 = M’’’’

6 = M’’’’’ 13 = O’’’’ ≡ M’’’
7 = O’’’’’ 14 = O’’’



15

5.2. OK = <M[π/3], S0>, K = TK ∪k=1,...,5 (0, S[kπ/3])

1 2 3 4 8
27

28 10
25 5 6 7 9

26 12

21 19 17 11
23

24   14

13
22 15

20 18 16

1 = O’ 15 = O’’’’’’’

2 = M’ ≡ M 16 = M’’’’’’’ ≡ M’’’’’’

3 = O ≡ O’’’’’’’’’’’ 17 = I’’’’’’’

4 = M’’’’’’’’’’’ 18 = O’’’’’’ ≡ O’’’’’
5 = I’ 19 = I’’’’’’
6 = I 20 = M’’’’’
7 = I’’’’’’’’’’’ 21 = I’’’’’
8 = M’’’’’’’’’’ 22 = M’’’’

9 = O’’’’’’’’’ ≡ O’’’’’’’’’ 23 = O’’’’ ≡ O’’’

10 = I’’’’’’’’’’ ↔(I’’’’’’’’’’’ → M’’’’’’’’’’’) 24 = I’’’’ ↔ (I’’’’’ → M’’’’’)

11 = M’’’’’’’’’ ≡ M’’’’’’’’ 25 = M’’’ ≡ M’’
12 = O’’’’’’’’’ 26 = I’’’
13 = O’’’’’’’’ 27 = O’’

14 = I’’’’’’’’ ↔ (I’’’’’’’ → O’’’’’’’) 28 = I’’ ↔ (I’ → O’)
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5.3. OK is generated by M[2π/3]. K = TK ∪k=1,...,3 (0, M[2kπ/3]).

11 12
6  7

5 8 13
10

3

4 9 14 15

1 2

1 = M’’ 9 = O’’’ ↔ (O’’ → I’’)

2 = O’’ 10 = I’’’ ≡ I’’’’ ↔ (I’’’’’ → M’’’’’)

3 = I’’ ≡ I ≡ I 11 = O’’’’
4 = O 12 = M’’’’

5 = M 13 = (M’’’’’ → I’’’’’) ∩ ((I’’’’ → M’’’’) ∩ (I’’’ ≡ I’’’’))
6 = O’ 14 = M’’’’’
7 = M’ 15 = O’’’’’

8 = M’’’ ↔ (I’ → M’)

5.4. When OK is generated by MK [2π/3] and S0: K = TK ∪k=1,...,3 (0, M[2kπ/3]) ∪k=1,...,3 (0, S[2kπ/3])

9 11

   10

7 12
8

6 4 5 13

1 3
2

1 = M 8 = I’ ≡ I’’’’

2 = O ≡ O’’’’’ 9 = M’’

3 = M’’’’’ 10 = I’’ ≡ I’’’
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4 = I ↔ (M’ → I’) 11 = M’’’

5 = I’’’’’ ↔ (I’’’’ → M’’’’) 12 = O’’’ ≡ O’’’’
6 = M’ 13 = M’’’’

7 = O’ ≡ O’’

5.5. OK = <M[2π/3], S[π/3]>. K = TK ∪ (0, M-[2π/3]) ∪ TK (0, M-[2π/3]) ∪ TK (0, S[π/3]) ∪ TK (0,

S[5π/3]) ∪ TK (0, Sπ).

8 10
 9

6 7 11

2 5 12

3
1 4

1 = O 7 = M’ ≡ M’’’
2 = M 8 = O’’’

3 = I ≡ M’’ ≡ I’ 9 = I’’’ ≡ I’’’’ ≡ I’’’’’
4 = O’’ 10 = M’’’’

5 = I’’ ≡ O’’’’’ 11 = O’’’’
6 =O’ 12 = M’’’’’

Thus, not only all the rosette and the friezes groups, but also all 17 different cases of the
wallpaper group can be found in semiotic structures generated by aid of the framework of
“General Sign Grammar” (Toth 2008b), i.e. 2 for the oblique, 6 for rectangular, 7 for
centered, 11 for square, and 11 for hexagonal lattices. Thus, further investigations in
semiotic group and crystallography theory will be proven to be extremely useful.
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